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Theory and simulation of the nematic zenithal anchoring coefficient
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Combining molecular simulation, Onsager theory, and the elastic description of nematic liquid crystals, we
study the dependence of the nematic liquid crystal elastic constants and the zenithal surface anchoring coeffi-
cient on the value of the bulk order parameter.
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I. INTRODUCTION

The anchoring phenomenon is the tendency of a liq
crystal to orient in a particular direction when in contact w
the container walls. The equilibrium director orientation s
by the interaction of the liquid crystal with the aligning su
face is called aneasy orientation axis. The simplest, strong
anchoring, assumption is that the director has a fixed or
tation at the boundaries along the easy orientation axis. H
ever, it has been discovered that the coupling of the dire
with the orienting surface can be rather weak. This result
deviation of the surface director from the easy axis in
sponse to small perturbations.

On a phenomenological level, weak anchoring can be
scribed by adding an appropriatesurface potentialto the free
energy of the system. Then minimization of the free ene
functional gives both the equations for the director in t
bulk and the appropriate boundary conditions@1#. The sim-
plest form of the surface potential has been proposed
Rapini and Papoular@2#,

f s52 1
2 W~n•e!2, ~1!

where the parameterW is termed an anchoring energy.
Since then, numerous experimental methods have b

used to measure the surface anchoring coefficientW @3–5#;
its value has turned out to be extremely important for liqu
crystal devices, i.e., displays, optical switches. Howev
comparatively little work on systematic experimental inve
tigation of the anchoring phenomenon has been presente
till now. From the available experimental data, one can
that the extrapolation lengthl5K33/W is inversely propor-
tional to the squared value of the bulk order parametel
}Q22. Taking into account the fact that the elastic const
K33 is typically proportional toQ2, this gives for the anchor
ing parameterW}Q4 @6#.

There have been several attempts to estimate the anc
ing coefficient theoretically@7# and by combining molecula
simulation with a local density functional approach@8,9#.
The main difficulty here is that one needs to know the dir
pair correlation function of the nematic state, which is us
ally unknown, and must hence be estimated with some
controlled approximations or assumptions~see, however,
Ref. @10#!. Moreover, it is often assumed that the director
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the interface region is fixed@9#. However, it has already bee
noticed that these approximations may give incorrect resu
by at least an order of magnitude, for example, in the cal
lation of bulk elastic constants@10#.

Similar studies have also been done using lattice mod
The existence of subsurface deformations and effective
trinsic anchoring arising from the incomplete molecular
teraction close to the surface has been studied using a
agonal lattice approach@11#. Monte Carlo simulations of the
Lebwohl-Lasher model have shown that the extrapolat
length is not in general equal to the ratio of the bulk
surface couplings@12#. However, the results were not suffi
ciently robust to determine the dependence of the ancho
energy on the order parameter.

The present work attempts to remedy the situation
combining the elastic description with Onsager theory a
Monte Carlo simulation results. We study the dependenc
the elastic (K33) and surface anchoring~W! coefficients on
the liquid crystal state point, which is defined by the bu
value of the order parameterQ.

The paper is organized as follows. We define the geo
etry and derive director profiles using elastic theory in S
II. In Sec. III we discuss the Onsager approach that allows
to calculate the single-particle density of the bulk and co
fined systems, while Sec. IV outlines the fluctuation a
proach to calculating elastic coefficients. Section V gives
tails of the technique used in Monte Carlo simulations a
the results are summarized in Sec. VI.

II. ELASTIC DESCRIPTION

The easiest way to obtain the surface anchoring coe
cient W is to create a director deformation far from the su
face. Then, measuring the response of the director near
cell surface, or fitting the director profile with a theoretical
predicted profile, yields an estimate of the anchoring
trapolation length and ratios of the elastic constants.

Indeed, consider one of the possible geometries suita
for the measurement of the zenithal anchoring strength.
the director have fixed orientation at the boundaryz5L. The
surface atz50 is assumed to provide homeotropic anchori
of strengthW. In the elastic description, deformations of th
director fieldn are described by the total free energy@1#,

Fel5E
V

f bdV1E
S
f sdS. ~2!
©2002 The American Physical Society04-1
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Here f b is the Frank-Oseen elastic free energy density,

f b5 1
2 $K11~“•n!21K22~n•@“3n# !21K33~n3@“3n# !2%,

~3!

whereK11, K22, andK33 are elastic constants, and the int
gration extends over the sample volumeV. f s is the surface
anchoring energy density, which we assume to be of
Rapini-Papoular form~1!, and it is integrated over the
boundary surfaceS.

In slab geometry, the directorn is assumed to lie in thex-z
plane and depends only on thez coordinate. Then it can be
parametrized asn5(sinu,0,cosu) which transforms Eq.~2!
into a free energy per unit area,

Fel /S5
1

2
K33E

0

L

f 13~u!S ]u

]zD 2

dz2
1

2
W cos2 u0 , ~4!

where f 13(u)512d sin2 u, d5(K332K11)/K33, u05u(z
50).

The absence of explicitz dependence in the free energ
~4! implies the first integral

f 13~u!S ]u

]zD 2

5const. ~5!

Boundary conditions read

K33f 13~u0!
]u

]zU
z50

5
1

2
W sin 2u0 ,

u~z5L !5uL . ~6!

Here we assumed that the director angle at the boundaz
5L is fixed.

Integrating Eq.~5!, together with the boundary condition
yields

E~u,d!5E~u0 ,d!1@E~uL ,d!2E~u0 ,d!#z/L,

@E~uL ,d!2E~u0 ,d!#Af 13~u0!5~L/2l!sin 2u0 , ~7!

whereE(u,d)5*0
uAf 13(x)dx is the incomplete elliptic inte-

gral of the second kind, andl5K33/W is the anchoring
extrapolation length. For small anglesu0 Eq. ~7! can be sim-
plified and has the form

E~u,d!5E~uL ,d!
z1l

L1l
. ~8!

Note that for small anglesuL and, correspondingly, for sma
u, E(u,d)5u and we have linear dependence of the direc
angle on thez coordinate,

dnx~z!'u~z!5uL

z1l

L1l
. ~9!
02170
e
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Using Eq.~8!, one can fit the director profilesu(z) with
l5K33/W andd5(K332K11)/K33 as adjustable parameter
To simplify the procedure, it is more appropriate to fitz(u)
rather thanu(z).

III. ONSAGER APPROACH

The Helmholtz free energy in the Onsager approach
expressed in terms of the single-particle densityr~1!, where
(1)5(r1 ,V1) represents both positionr1 and orientation
V1 . It has the following form@13,14#:

bF @r#5E r~1!$ ln r~1!L3212bm1bU~1!%d~1!

2
1

2 E f ~1,2!r~1!r~2!d~1!d~2!. ~10!

Here b51/kBT, L is the de Broglie wavelength,m is the
chemical potential,U is the external potential energy~includ-
ing the surface potential!, andf (1,2) is the Mayerf function,

f ~1,2!5exp@2V~1,2!/kBT#21, ~11!

where elongated particles interact pairwise through the
tential V(1,2).

The equilibrium single-particle density that minimizes t
free energy ~10! is a solution of the following Euler-
Lagrange equation

ln r~1!L32bm1bU~1!2E f ~1,2!r~2!d~2!50,

~12!

which can be obtained from the variation of the function
~10!. In practice, we find it more convenient to minimize th
functional ~10! instead of solving the integral equation~12!.

A. Bulk problem

In the bulk problem, the single particle density is indepe
dent of position,r(1)5r(V1). Then the integrals over po
sition may be performed directly. To perform the integrati
over the angles, we expand the Mayerf function and the
single-particle density in spherical harmonics,

f ~1,2!5 (
l 1 ,l 2 ,l r

f l 1 ,l 2 ,l r~r 12!F
l 1 ,l 2 ,l r~V1 ,V2 ,Vr !,

~13!

r~V!5(
l

even

r l Yl 0~V!, ~14!

whereF l 1 ,l 2 ,l r(V1 ,V2 ,Vr) is a rotational invariant@15#

F l 1 ,l 2 ,l r54p (
m1 ,m2 ,mr

S l 1 l 2 l r

m1 m2 mr
D

3Yl 1m1
~V1!Yl 2m2

~V2!Cl rmr
~Vr !. ~15!

Here
4-2
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S l l 8 l 9

m m8 m9
D

is a 3j symbol, Vr is the direction of the unit vectorr̂12
5r12/r 12 wherer125r12r2 , Cl m is a reduced spherical ha
monic. In writing Eq.~14!, we assumed that the directorn0 is
pointing along thez axis.

To minimize the grand potential it is convenient to expa
the logarithm of the density in spherical harmonics,

ln r~V!5(
l

even

cl Yl 0~V!. ~16!

The grand potential then can be rewritten in the form

bF
V

52A4p~11bm!r01 (
l 50

even

cl r l 1
2pVl l

A2l 11
r l r l ,

~17!

where the coefficientsr l may be expressed in terms of th
parameterscl , and where the pair-excluded volume is e
panded in coefficients

Vl l 524pE
0

`

r 2dr f l l 0~r !. ~18!

The grand potential was numerically minimized with resp
to variation of the parameterscl , by the conjugate gradien
method@16#. The resulting single-particle density was us
to calculate elastic constants, for different values of the or
parameter.

B. Elastic constants

To evaluate the elastic constants we used the express
derived by Poniewierski and Stecki@17–19#,

K115Mxxxx5M yyyy,

K225Mxxyy5M yyxx,

K335Mzzxx5Mzzyy, ~19!

where

Mabgd5
1

2
kBTE dr12dV1dV2f ~r12,V1 ,V2!

3r 12
a r 12

b r8~cosu1!r8~cosu2!V1gV2d . ~20!

All integrals are evaluated in a local coordinate frame w
the z axis parallel to the director at pointr.

As discussed in Appendix A, performing the integratio
over the angles and making use of the properties of 3j sym-
bols and spherical harmonics, one obtains a simplified
pression previously given by Stelzeret al. @20#:

bK115K~1,1,3!,

bK225K~1,25,21!,
02170
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bK335K~22,4,24!, ~21!

where

K~a1 ,a2 ,a3!5
4p2

3 (
l

even

l ~ l 11!r l
2F I l ,l ,0

A2l 11

2
6a11a2l ~ l 11!

5 S 2~ l 22!!

~2l 13!! D
1/2

I l ,l ,2G
1

a3

5
A3/2

~ l 13!!

~ l 21!! S ~2l !!

~2l 15!! D
1/2

3r l r l 12I l ,l 12,2,

and whereI l 1 ,l 2 ,l are radial integrals over the expansio
coefficients of the Mayerf function.

C. Slab geometry

In slab geometry, with thez direction normal to the sur-
faces, the single-particle density and the external poten
depend on thez coordinate only. To perform the integration
over the angles, we expand the Mayerf function into rota-
tional invariants, similar to the bulk system~13!. The single-
particle density and its logarithm can be also expanded
spherical harmonics,

r~z,V!5(
l m

r l m~z!Yl m* ~V!,

ln r~z,V!5(
l m

cl m~z!Yl m~V!. ~22!

The difference from the bulk case, Eqs.~14!, ~16!, is that the
director is allowed to vary in thex-z plane, so an expansio
in Legendre polynomials (m50) is not sufficient. Conduct-
ing angular andx andy integrations gives

bF
S

52E dzA4p~11bm!r00~z!

1(
l ,m

@cl m~z!1bU l m~z!#r l m

12pE dz1 dz2 Al 1 ,l 2 ,m~z12!r l 1m~z1!r l 2m~z2!,

~23!

where the pair-excluded area at givenz separationz12 is ex-
panded in coefficients

Al 1 ,l 2 ,m~z12!522p(
l

even S l 1 l 2 l

m m̄ 0 D
3E

0

`

s ds fl 1 ,l 2 ,l ~r 12!Pl ~cosu r !.

~24!
4-3
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Here s25(x12x2)21(y12y2)2, tanur5s/(z12z2), m̄5
2m. Integrating, we took into account that the 3j symbol
vanishes unlessm11m21mr50.

To obtain equilibrium single-particle density profiles, th
grand potential then was tabulated on a regular grid of po
zi and numerically minimized with respect to variation of t
parameterscl m(zi), by the conjugate gradient method.

D. Anchoring energy

To obtain the microscopic expression for the extrapolat
length l, we start from the equation for the single-partic
density~12!. Assume that the solution for a ground state, i.
for homeotropically aligned liquid crystal in slab geomet
is given by the single-particle densityr0 . Consider a small
perturbation around the ground state,r5r01dr. To first
order indr, Eq. ~12! can be written as

dr~1!

r0~1!
5E f ~1,2!dr~2!d~2!. ~25!

In the case of slowly varying director fields we assum
that the free energy functional is locally in equilibrium. Th
is equivalent to the mathematical simplification@9,21#

r~r,V!5r0„r,n~r!•V…. ~26!

Then the density perturbation can be written in terms of
perturbation of the director,

dr~r,V!5r08~r,n0•V!dn~r!•V, ~27!

where the prime denotes a partial derivative with respec
(n0•V).

In slab geometry with thez axis normal to the surfaces
the single particle densityr0 depends on thez coordinate
only and can be expanded in spherical harmonics simila
Eq. ~22!. Note thatr0 does not depend onf, which implies
m50 in expressions~22!. We also assume that the director
parallel to thex-zplane,dn5(dnx,0,0). Conducting angula
integrations in Eq.~25! and making use of the properties
3 j symbols we obtain

cl 1
~z1!dnx~z1!54p (

l 252

even S l 2~ l 211!

l 1~ l 111! D
1/2

3E
0

`

Al 1 ,l 2,1~z22z1!r l 2
~z2!

3dnx~z2!dz2 . ~28!

Equation~28! is a homogeneous Fredholm equation of t
second kind. It allows one to calculate the director pro
~for small director deviations from the ground state,n05ez!
once the single-particle densityr0 of the ground state is
known. Equation~28! is not valid for everyl 1 , in spite of
the derivation. This is because we are trying to map
single-particle density variation onto the director variati
02170
ts

n
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~Eq. 26!. However, this equation should be valid for the lea
ing term in the density expansion,l 152, which we consider
below.

First, we construct the solution to the Eq.~28! in the cell
bulk. The kernelAl 1 ,l 2,1(z22z1) is a short-ranged function

It equals zero foruz22z1u.a, where a is the molecular
length. The bulk director is a slowly varying function on th
length scale. Therefore we can expand it in a Taylor seri

dnx~z2!5dnx~z1!1dnx8~z1!z121dnx9~z1!z12
2 /21¯

~29!

and restrict ourselves to second order in the expansion. T
the equation for the director~28! can be rewritten as a
second-order linear differential equation

a2~z!dnx9~z!1a1~z!dnx8~z!1a0~z!dnx~z!50, ~30!

where

an~z!5
4p

A6
(

l 252

even

Al 2~ l 211!E
0

L

A2,l 2,1~z22z!

3r l 2
~z2!

z12
n

n!
dz22c2~z!dn,0 . ~31!

In the bulk, the expansion coefficientsc2 andr l 2
do not

depend on thez coordinate. Expansion coefficients of th
excluded area,Al 1 ,l 2 ,l r

(z), are even functions ofz, which

immediately implies thata1(z)50 in the bulk, since the in-
tegrated functionzAl 1 ,l 2 ,l r

(z) is odd@becausea1(z) is zero

in the bulk, we expandeddnx(z) up to second order#.
To prove thata0(z)50 in the bulk, we consider again th

equation for the single particle density~12!. Performing the
usual expansion of density andf function ~13!, ~14! and in-
tegrating over the angles andx, y coordinates we obtain

c0~z1!5A4pbm24pE
0

L

A0,0,0~z22z1!r0~z2!dz2 ,

cl 1
~z1!524p (

l 250

even E
0

L

Al 1 ,l 2,0~z22z1!r l 2
~z2!dz2

~ l 1Þ0!, ~32!

where Al 1 ,l 2 ,x are the expansion coefficients of th
excluded area in a series of spherical harmonics. It
easy to show that the left-hand side of the second equa
in Eq. ~32! equalsa0(z) in the cell bulk. Indeed, using the
symmetry of the excluded volume expansion coefficie
we can write 24p *0

L A2,l 2,1(z22zb)dz254p *2`
`

A2,2,0(z)dzd2,l 2
5V22d2,l 2

, which converts the expressio

for a0(z) to the left-hand side of the second equation in E
~32!. In fact, the conclusiona0(z)50 in the cell bulk is a
consequence of the invariance of the grand potential w
respect to director rotations.
4-4
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Therefore, Eq.~30! in the cell bulk reduces todnx9(z)
50 which means we have a linear dependence of the di
tor on z coordinate, in agreement with the result of elas
theory ~9!. This also means that, in the cell bulk,c01c1z is
an eigenvector of the Fredholm equation~28!.

To solve Eq.~28! near the cell boundary is a much mo
challenging task. Numerically it can be done using, for e
ample, an iterative method@16#. Here we try to construct a
crude analytical solution that will give us some qualitati
understanding of what is happening in the interface regio

To begin with, we simplify Eq.~28!. The sum overl 2 on
the right-hand side of Eq.~28! is converging very fast~for
ellipsoids with the elongatione515, every term is about ten
times smaller than the previous one!. Therefore, we truncate
the sum leaving only thel 252 term. Then, the kernel of th
Fredholm equationA2,2,1(z12z2) can be expanded in a Tay
lor series,

A2,2,1~z12z2!5 (
n50

`

z1
nFn~z2!, ~33!

where Fn(z) are some functions. A practical example
such an expansion is given in Appendix B. The kernel is th
separable, and the problem is reduced to the solution of a
of linear algebraic equations. Indeed, substituting Eq.~33!
into Eq. ~28! we obtain

dnx~z!5c2
21~z! (

n50

`

bnzn, ~34!

where thebn are some constants. Substituting Eq.~34! back
into Eq. ~28! we obtain an infinite set of linear equations f
the coefficientsbn . To obtain an analytical expression, w
perform further simplifications. First we note that, in the c
bulk, the director is a linear function of thez coordinate.
Therefore, to a good approximation, we may retain only
first two terms in Eq.~30! since in the cell bulkc2(z)
5const. Using again the director profile given by elas
theory, Eq.~9!, we obtain an expression for the extrapolati
length

l5
b0

b1
5

4pE 0
`zA2,2,1~z!r2~z!c2

21~z!dz

124pE 0
`A2,2,1~z!r2~z!c2

21~z!dz

. ~35!

This expression is able to give qualitative explanations of
anchoring phenomenon in our system. In the ideal case, o
considered in phenomenological approaches@19#, the density
and order parameter are assumed to be constant in the
i.e., r2(z)c2

21(z)5const. The anchoring appears only due
the presence of the interface, which breaks translational s
metry. According to Eq. ~32!, c252V22r2 , therefore
4p *0

` A2,2,1(z)r2(z)c2
21dz51/2. Then the anchoring coef

ficient is proportional to the first moment of the exclud
area coefficientA2,2,1(z)
02170
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l52
8p

V22
E

0

`

zA2,2,1~z!dz, ~36!

and does not depend on the value of density or order par
eter, since excluded area, as well as excluded volume,
completely defined by the geometry of the overlapping m
ecules. This means that in the ideal case of a uniform n
atic, the anchoring coefficientW5K33/l has the same de
pendence on the order parameter as the elastic constantK33.

In reality, one observes rather strong subsurface variat
of the density and order parameter. The ratior2(z)/c2(z)
then comes into play and contributes to the overall dep
dence of the extrapolation length on the order parameter.
numerical results that show this dependence are present
Sec. VI B. A simple physical explanation is also possib
Presmectic ordering and higher density of the nematic ph
in the interface region indicate that the nematic liquid crys
is at different state point. The mesophase is more ordere
this state point and this ordering is less sensitive to the d
sity variation in the cell bulk. Since this ordering defines t
director profile at the interface, it also affects the depende
of the extrapolation length on the state point.

IV. THERMAL FLUCTUATIONS

Another simulation method to measure bulk elastic co
stantsKii and the zenithal anchoring energyW is based on
the measurement of the director fluctuation amplitudesdn in
the liquid crystal cell@22–25#. Consider again slab geometr
with homeotropic anchoring of the director at both cell su
faces. Consider a small perturbation of the director arou
the equilibrium distribution

n~r!5ez1dn~r!. ~37!

Minimizing the free energy~2! and linearizing the equation
for the director and boundary conditions with respect todn,
we obtain

K11~dnx,xx1dny,yx!1K22~dnx,yy2dny,yx!1K33dnx,zz50,

K11~dnx,xy1dny,yy!1K22~dnx,xx2dny,yx!1K33dnx,zz50,

Wdn1K33

]

]z
dnU

z5L

50, Wdn2K33

]

]z
dnU

z50

50.

~38!

Here we adopt the notationdna,bg5]b]g(dna).
We now expanddn(r) in a series of orthogonal function

dn~r!5
1

V (
q' ,q'

eiq'•r'@dn~1 !~q',qz!e
iqzr z

1dn~2 !~q',qz!c
2 iqzr z#, ~39!

where q'5(qx ,qy), and dn(2)5( ix2j)/( ix1j)dn(1) to
satisfy the boundary conditions. Here we have introduced
dimensionless wave vectorx5qzL and anchoring paramete
4-5
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j5
WL

K33
5

L

l
, ~40!

wherel is the extrapolation length@1#. The wave vectorsqz
form a discrete spectrum because of confinement in thz
direction, which depends on the anchoring energyW. The
explicit form of theqz spectrum is given by the secular equ
tion

~j22x2!sinx12jx cosx50. ~41!

In molecular simulations, rather than measuring direc
fluctuations, it is more convenient to measure fluctuations
the second-rank order tensor components~following Ref.
@26#!. We define the real-space order tensor density

Qab~r!5
V

N (
i

d~r2r i !Qab
i ,

Qab
i 5 3

2 ~uiauib2 1
3 dab!,

wherea, b5x,y,z, in terms of the orientation vectorsui of
each moleculei ~we consider only uniaxial molecules!. If we
assume that there is no variation in the degree of order
and neglect biaxiality of the order tensor, we may write

Qab~r!5 3
2 Qna~r!nb~r!2 1

2 Qdab ,

whereQ is the order parameter, i.e., the largest eigenvalu
Qab(r).

Measurements are performed directly in reciprocal spa
The Fourier transform of the real-space order tensor is

Qab~k!5E
V
Qab~r!eik•rdr5

V

N (
i

Qab
i eik•ri.

Then the fluctuationŝ uQab(k)u2& can be easily measure
from simulations

uQab~kz!u25
V2

N2 F S (
i

Qab
i cos~kzzi ! D 2

1S (
i

Qab
i sin~kzzi ! D 2G , ~42!

and compared with the prediction of elastic theory

^uQaz~kz!u2&5
9

8
kBT

Q2V

K33
(
qrz

x21j2

qz
2~2j1x21j2!

3Uei (k1x)21

k1x
1S ix2j

ix1j D ei ~k2x!21

k2x U2

,

~43!

where^¯& denotes an ensemble average,k5kzL.
We measureQ and ^uQaz(kz)u2& from simulations, Eq.

~42!, and then compare with the theoretical prediction, E
~43!, which is parametrized byL, l, andK33. Both the per-
02170
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mitted qz spectrum, and the variation of^uQaz(kz)u2& with
kz , are sensitive to the anchoring strength parametej
5L/l.

V. MOLECULAR MODEL AND SIMULATION METHODS

We performed Monte Carlo~MC! simulation of a liquid
crystal confined between parallel walls, with finite homeot
pic anchoring at the walls. We used a molecular model t
has been studied earlier in this geometry@25#. The molecules
in this study were modeled as hard ellipsoids of revolution
elongatione5a/b515, wherea is the length of the major
axis andb the length of the minor axis. Such systems can
form smectic or columnar phases@27#, and the phase transi
tions are not thermally driven as they are for most mesoge
Therefore, it should be borne in mind that simulation resu
are model specific, however, the advantage of using syst
of hard ellipsoids is that they exhibit a simple phase behav
with some resemblance of that of real nematogens. In a
tion, as the elongation increases, the nematic-isotropic ph
boundary approaches the Onsager limit. This eases the c
parison between simulation and density-functional Onsag
type theories.

The phase diagram and properties of this family of mo
els are well studied@27–31#. It is useful to express the den
sity as a fraction of the close-packed densityrcp of perfectly
aligned hard ellipsoids, assuming an affinely transform
face-centered cubic or hexagonal close-packed lattice.
this model, temperature is not a significant thermodynam
quantity, so it is possible to choosekBT51 throughout.

The slab geometry is defined by two hard parallel confi
ing walls, which cannot be penetrated by thecentersof the
ellipsoidal molecules. Packing considerations generate
meotropic ordering at the surface, since the molecules h
more free volume if their axes are normal to the wall. S
face anchoring in this system has been studied recently
applying an orienting perturbation at one of the walls a
observing the response at the other@25# and by measuring
amplitudes of the director fluctuations@22#. This yielded an
estimate of the extrapolation lengthl'17.5b'1.16a at one
particular state point corresponding to the value of the or
parameterQ'0.85.

A sequence of runs was carried out for systems ofN
52000 particles using the constant-NVT ensemble, allowing
typically 105 MC sweeps for equilibration and 43107

sweeps for accumulation of averages~one sweep is one at
tempted move per particle!. The wall separation was fixed
and equal toLz'4.93a. Note, that the size of the simulatio
box Lz is not equal to the liquid crystal cell thicknessL
appearing in the elastic theory. The difference can be
cribed to partial penetration of the walls by the liquid crys
molecules, and/or formation of a solid layer near the walls
is possible to writeL5Lz12Lw , whereLw characterizes the
wall. In our previous publication we foundLw'0.3a @22#.

The same molecular model and interaction of the m
ecules with the walls was adopted for the Onsager calc
tions. It was found sufficient to include terms with 0< l<8
in the expansion of lnr, while terms with 0< l<10 were
4-6
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TABLE I. Onsager calculations in the bulk. Reduced densitiesr/rcp, values of the nematic order parameterQ, and elastic constants fo
hard ellipsoids with elongatione515.

m r/rcp Q K11 K22 K33

1.2 0.0293 0.7193 0.7951 0.2925 3.5290
1.3 0.0303 0.7532 0.8883 0.3294 4.4024
1.4 0.0313 0.7779 0.9677 0.3614 5.2387
1.5 0.0323 0.7973 1.0398 0.3909 6.0704
1.6 0.0332 0.8132 1.1076 0.4190 6.9113
1.7 0.0341 0.8266 1.1726 0.4463 7.7694
1.8 0.0349 0.8382 1.2361 0.4731 8.6496
1.9 0.0358 0.8482 1.2985 0.4997 9.5547
2.0 0.0367 0.8571 1.3605 0.5263 10.4883
2.1 0.0376 0.8650 1.4225 0.5531 11.4510
2.2 0.0384 0.8721 1.4848 0.5801 12.4448
2.3 0.0393 0.8785 1.5477 0.6076 13.4716
2.4 0.0402 0.8843 1.6113 0.6354 14.5318
2.5 0.0410 0.8896 1.6758 0.6639 15.6268
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included in the expansion of the pair excluded volume co
ficientsVl l and the excluded area coefficientsAl 1 ,l 2 ,m .

VI. RESULTS AND DISCUSSION

A. Onsager theory, bulk

Minimization of the free energy functional~10! was car-
ried out for several values of chemical potentialm. From the
single-particle density we evaluated Frank elastic consta
which, together with the values of the bulk density as a fr
tion of the close-packed density and the value of the or
parameter are given in Table I. The results are typical of
elastic constants of prolate bodies. They increase with fl
density~order parameter! andK3.K1.K2 @29#.

It is essential to carry out bulk calculations if we want
know both anchoring extrapolation lengthl5K33/W and
anchoring strengthW. The bulk problem provides us with th
absolute values of the elastic constants; the elastic th
includes only ratios of elastic constants in the expression
the director profile.

B. Onsager theory, slab geometry

Minimization of the grand potential was carried out
slab geometry for the same values of chemical potentialm as
considered in bulk. From the density and order param
profiles we were able to extract values of these quantitie
the central part of the cell, which agreed with the bulk O
sager calculations.

Together with the simulation results, we plot dependen
of the bulk order parameter versus density in Fig. 1. T
Onsager theory does not describe the bulk equation for
state perfectly: the predicted bulk density for a given or
parameter value is larger than the value obtained in the si
lation.

With this choice, the same values of the chemical pot
tial and the same slab dimensions, minimization of the gr
potential was carried out for the system with an external fi
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applied near the right wall. Profiles of director angleu(z) are
compared with elastic theory@Eq. ~8!# in Fig. 2. The elastic
theory has been fitted to the director angle profiles predic
by the Onsager theory using two adjustable parameters
extrapolation lengthl and the elastic constant ratiod. Note
that only part of the bulk region has been used for fittin
20,z/b,80 where the elastic theory is applicable.

The anisotropy of elastic constantsd obtained from fitting
is shown in Fig. 3, together with the results of calculatio
using the Poniewierski and Stecki expressions. The valu
d, and hence the splay constantK1 , comes into play only as
the deformation angleu(z) increases. Therefore, for the ex
ternal field with easy axisuL5p/4, the error in the determi-
nation ofd from simulation data is quite large.

The dependence of the extrapolation lengthl on the order
parameterQ is shown in Fig. 4. It is seen that Onsager theo

FIG. 1. Order parameterQ as a function of the density~mea-
sured far from the surface!. The density is expressed relative to th
closed-packed densityrcp for perfectly aligned ellipsoids. Filled
circles: simulation results. Open circles: Onsager theory calc
tions in slab geometry. Solid line: Onsager theory, bulk.
4-7
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DENIS ANDRIENKO AND MICHAEL P. ALLEN PHYSICAL REVIEW E 65 021704
predicts the extrapolation length to grow linearly with t
order parameter, which is completely different from the e
perimental results in thermotropic liquid crystals, wherel
decreases with the increase of the order parameter asQ22.

We have also carried out minimization of the grand p
tential for the system without an external field. As a res
we obtained the single-particle density with a homeotro
distribution of the director in the cell. The dependence of
extrapolation length on the order parameter was then ca
lated using Eq.~35! and is also shown in Fig. 4. The resul
qualitatively agree with the results of fitting obtained
combining Onsager theory and elastic theory. The extrap
tion length tends to grow with increase in the order para
eter and has the same order of magnitude. Plugging
single-particle density into all equations preceding Eq.~35!,
we were able to check the approximations we did deriv
this equation. We found that the most crude approximatio

FIG. 2. Typical profiles of director angleu(z) in the slab geom-
etry. Orienting fields are applied in the region 100,z/b,148 near
the right wall, favoring director angles ofp/4 andp/2 relative to the
surface normal. The left wall is unperturbed. Solid lines: Onsa
theory. Circles: results of fitting the profiles in the bulk region w
the prediction of elastic theory.

FIG. 3. Ratio of the elastic constants,d5(K332K11)/K33.
Circles: Poniewierski-Stecki expressions. Squares: Onsager th
in slab geometry, with wall anchoring field at anglea5p/4, fitted
with the results of elastic theory. Triangles: Onsager theory w
a5p/2, fitted with elastic theory.
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the truncation of the sum in Eq.~34!. This is not a funda-
mental problem and can be easily corrected by taking i
account a sufficient number of expansion coefficients. Ho
ever, this points out that the dependence of the director
the z coordinate near the cell surface is different from t
linear dependence in the cell bulk. Moreover, to obtain c
rect quantitative values of the anchoring coefficient, or e
trapolation length, one needs to know the director distrib
tion at the surface. The assumptiondn5const in the
interface region, which has been made in Ref.@9#, may lead
to absolutely incorrect estimates of the anchoring coefficie

C. Simulation

Simulations were carried out in slab geometry for seve
values of the number density. The density variation 0
<r/rcp<0.34 provides a sufficient range of order parame
variation in the nematic phase, 0.68<Q<0.88 for us to
study the effect of ordering on elastic behavior.

The order tensor fluctuations in reciprocal space were
culated using expression~42!. To fit the simulation results we
used expression~43!. Recall that the size of the simulatio
box Lz is not necessarily equal to the liquid crystal cell thic
nessL appearing in the elastic theory. We found thatL5Lz
12Lw , with Lw'4.5b50.3a, almost independent of the
density.

Using this value ofLw we adjusted the extrapolatio
lengthl and the elastic constantK33 to obtain the best fit to
the fluctuation amplitudes. Typical order fluctuation amp
tudes together with the corresponding fitting curves are p
ted in Fig. 5. From this plot one can see that the fitting cur
agree quite well with the simulation results for small valu
of the wave vectorkz . At higher kz , the structure is not
perfectly reproduced, as one would expect for a the
valid for long-wavelength fluctuations, but the agreemen
satisfactory.

r

ry

h

FIG. 4. Extrapolation lengthl as a function of the order param
eter. Circles: Onsager theory in slab geometry, director profiles
ted with elastic theory, for anchoring field witha5p/4. Triangles:
the same, but fora5p/2. Diamonds: Onsager theory in slab geom
etry, with no field, extrapolation length calculated using Eq.~35!.
Filled squares: Monte Carlo results obtained by measuring dire
fluctuations. Open squares: Monte Carlo results, with applied fi
near the right-hand wall.
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The elastic constant,K33b/kBT versus order parameterQ
is plotted in Fig. 6. The agreement with the Onsager theor
satisfactory, especially if we take into account that the eq
tion of state is not perfectly reproduced by the Onsa
theory.

The dependence of the extrapolation lengthl on the order
parameterQ is shown in Fig. 4, together with the resul
from the Onsager theory. It should be noted that combin
the elastic approach with the Onsager calculations does
allow one to determine, separately,Lw andl. Therefore, the
results of the Onsager theory in Fig. 4 really representl
1Lw , which is one of the possible origins of the systema
difference between the two approaches.

To double check the results obtained by examining
director fluctuation amplitudes, we performed the same t
of experiments as in the Onsager slab system. Within a ra
7.5b of the right-hand wall, a strong coupling field was a
plied to molecular orientations,Vext;(ui•ez)

2, aligning the
molecular near the right wall parallel to it. After the syste
was equilibrated, the director profile was fitted to the res
of the elastic theory, Eq.~8!. The dependence of the extrap
lation lengthl on the order parameterQ is also shown in

FIG. 5. Fluctuations of the director~arbitrary units! as a function
of wave vector~normalized by the molecular minor axis lengthb!.
Symbols: Monte Carlo results. Solid lines: elastic theory, fitted
parameters discussed in the text. Inset: fluctuations multiplied
(kzb)2 to emphasize structure at higher wave numbers.

FIG. 6. K33b/kBT. Circles: Onsager bulk calculations. Square
MC simulation results.
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Fig. 4. One can see that the agreement between the
methods is quite good.

Finally, we plot the dependence of the anchoring ene
coefficient,W5K33/l, which is an intrinsic characteristic o
the interface region, in Fig. 7. For Onsager theory,l(Q) is
given by the results in slab geometry fitted with the elas
theory~Fig. 4!, K33(Q)—by the Poniewierski-Stecki expres
sions~Fig. 6!. For MC simulations, we used the elastic co
stant obtained from the analysis of the director fluctuat
amplitudes. All methods predict that the anchoring coe
cient is a nonmonotonic function of the order parame
even though the actual variation is small.

VII. CONCLUSIONS

We have studied the dependence of the zenithal sur
anchoring coefficient on the order parameter of a lyotro
nematic liquid crystal modeled by hard ellipsoids. Seve
techniques have been used: Onsager theory combined
elastic theory; Monte Carlo simulations fitted to elas
theory; analysis of the director fluctuation amplitudes o
tained from Monte Carlo simulations. The results of the
methods agreed qualitatively with each other.

Perhaps the most interesting aspect of this study is
increase of the anchoring extrapolation length with the
crease of the nematic order parameter. This implies that
bulk elastic moduli in our system grow faster than the s
face anchoring strength. This is opposite to the experim
tally observed behavior in thermotropic nematics, where
extrapolation length goes down with increase of the or
parameter.

A microscopic semi-qualitative expression for the e
trapolation length allowed us to conclude that subsurf
variations of the single-particle density, mainly defined
the nematic order parameter and density variation, contrib
substantially to the anchoring phenomenon. We showed
for an ideal system, in which the single-particle density
the cell is assumed to be uniform, the extrapolation len
does not depend on the nematic order parameter. This de

o
y

:

FIG. 7. Anchoring energyW as a function of the order param
eter. Circles: Onsager theory~with a smooth curve to guide the
eye!. Open squares: MC results obtained by measuring dire
fluctuations. Filled squares: MC results, field near the right-ha
wall.
4-9
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DENIS ANDRIENKO AND MICHAEL P. ALLEN PHYSICAL REVIEW E 65 021704
dence is therefore associated with the subsurface varia
of the single-particle density.

We now turn to a brief discussion about possible gen
alizations of this work. First, it would be interesting to g
beyond the limits of Onsager theory and use the direct
correlation function in the nematic liquid instead of th
Mayer f function. Second, as was shown in Sec. III D, t
anchoring coefficient can be calculated if we know t
single-particle density and the direct pair correlation funct
~or Mayer f function in case of Onsager theory!. This has
also been done by Stelzeret al. @9# with numerous approxi-
mations. Combining elastic theory and local density fun
tional theory, one can avoid these approximations, or at l
check their validity. This work is in progress.
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APPENDIX A: ELASTIC CONSTANTS

Performing the integrations over the angles in express
~20! and making use of the properties of 3j symbols and
spherical harmonics one obtains

bK115k~1,1,1,1,1,1!, ~A1!

bK225k~1,21,1,21,1,21!,

bK335k~22,0,22,0,22,0!,

where
k~b1 ,b2 ,b3 ,b4 ,b5 ,b6!5
4p2

3 (
l

even

l ~ l 11!r l
2 F2S l l 0

1 21 0D I l ,l ,01
b1

5 S l l 2

1 21 0D I l ,l ,2

1
b2

5
A3/2S l l 2

1 1 22D I l ,l ,2G1S ~ l 11!!

~ l 23!! D
1/2

r l r l 22Fb3

5 S l l 22 2

1 21 0D
1

b4

5
A3/2S l l 22 2

1 1 22D G I l ,l 22,21S ~ l 13!!

~ l 23!! D
1/2

r l r l 12Fb5

5 S l l 12 2

1 21 0D
1

b6

5
A3/2S l l 12 2

1 1 22D G I l ,l 12,2, ~A2!
the
d

nly

i-
and I l 1 ,l 2 ,l are radial integrals over the expansion coe
cients of the Mayerf function,

I l 1 ,l 2 ,l 5E dr r 4f l 1 ,l 2 ,l ~r !. ~A3!

Expression~A1! is the same as obtained before by Stel
et al. @20#, except that we used 3j symbols instead of
Clebsch-Gordan coefficients and a different normalization
the single-particle density. To simplify Eq.~A2! we use the
relation between the 3j symbols

A3/2S l l 12 2

1 1 22D 5
1

2 S l l 12 2

1 21 0D , ~A4!

and take into account the fact that sums withb3 , b5 andb4 .
b6 are identical, since

S l 1 l 2 2

1 21 0D 5~21! l 11l 2S l 2 l 1 2

21 1 0D
5S l 2 l 1 2

1 21 0D ,
-

r

f

and I l 1 ,l 2,25I l 2 ,l 1,2. Performing simplifications and taking
into account explicit expressions for the 3j coefficients@32#,
we obtain expression~21!.

APPENDIX B: EXPANSION OF THE KERNEL

From the numerical data we found that the kernel of
integral equationA221(z) can be accurately approximate
with a Gaussian function

A2,2,1~z!52
V22

4pAp l
exp@2~z/ l !2#, ~B1!

where we took into account that24p*2`
` A2,2,1(z)dz

5V22. Here l is a geometrical parameter that depends o
on the elongation of the molecules.

Using the generating function for the Hermite polynom
als @33#

exp~2t212tx!5 (
n50

`

Hn~x!
tn

n!
, ~B2!

one can write the kernel in a separable form,
4-10
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A2,2,1~z22z1!52
V22

4pAp l
exp@2~z2 / l !2#

3 (
n50

`
1

n! S z1

l D n

Hn~z2 / l !, ~B3!

similar to the general case we used in Sec. III D.
Using this approximation to the kernel one can show t

the expression for the anchoring coefficient~36! reads
ch

r,

J.

.

.

er

02170
t

l5 l /Ap. ~B4!

For ellipsoids with elongatione515, we foundl'5.46b.
This results in an anchoring coefficientl'3.1b that is much
lower than the actual value of the anchoring in the syst
with the density and order parameter variations at the s
faces. Hence, changes in the density, order parameter, an
a result, in the director profile in the interface region cann
be neglected~see also Sec. VI B!.
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