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Theory and simulation of the nematic zenithal anchoring coefficient
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Combining molecular simulation, Onsager theory, and the elastic description of nematic liquid crystals, we
study the dependence of the nematic liquid crystal elastic constants and the zenithal surface anchoring coeffi-
cient on the value of the bulk order parameter.
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[. INTRODUCTION the interface region is fixel®]. However, it has already been
noticed that these approximations may give incorrect results,
The anchoring phenomenon is the tendency of a liquicby at least an order of magnitude, for example, in the calcu-
crystal to orient in a particular direction when in contact with lation of bulk elastic constan{4.0].
the container walls. The equilibrium director orientation set Similar studies have also been done using lattice models.
by the interaction of the liquid crystal with the aligning sur- The existence of subsurface deformations and effective in-
face is called areasy orientation axisThe simplest, strong trinsic anchoring arising from the incomplete molecular in-
anchoring, assumption is that the director has a fixed orienteraction close to the surface has been studied using a hex-
tation at the boundaries along the easy orientation axis. Howagonal lattice approadii1]. Monte Carlo simulations of the
ever, it has been discovered that the coupling of the directorebwohl-Lasher model have shown that the extrapolation
with the orienting surface can be rather weak. This results itength is not in general equal to the ratio of the bulk to
deviation of the surface director from the easy axis in re-surface coupling$12]. However, the results were not suffi-

sponse to small perturbations. ciently robust to determine the dependence of the anchoring
On a phenomenological level, weak anchoring can be deenergy on the order parameter.
scribed by adding an appropriagarface potentiato the free The present work attempts to remedy the situation by

energy of the system. Then minimization of the free energycombining the elastic description with Onsager theory and
functional gives both the equations for the director in theMonte Carlo simulation results. We study the dependence of
bulk and the appropriate boundary conditigd$ The sim-  the elastic K33) and surface anchorin@V) coefficients on
plest form of the surface potential has been proposed bthe liquid crystal state point, which is defined by the bulk

Rapini and Papouldr?], value of the order parametéy.
The paper is organized as follows. We define the geom-
fs=—3W(n-e)? (1) etry and derive director profiles using elastic theory in Sec.
II. In Sec. lll we discuss the Onsager approach that allows us
where the parametéd is termed an anchoring energy. to calculate the single-particle density of the bulk and con-

Since then, numerous experimental methods have bedined systems, while Sec. IV outlines the fluctuation ap-
used to measure the surface anchoring coeffidi€éng8—5]; proach to calculating elastic coefficients. Section V gives de-
its value has turned out to be extremely important for liquidtails of the technique used in Monte Carlo simulations and
crystal devices, i.e., displays, optical switches. Howeverthe results are summarized in Sec. VI.
comparatively little work on systematic experimental inves-
tigation of the anchoring phenomenon has been presented up
till now. From the available experimental data, one can say

that the extrapolation length=K33/W is inversely propor- The easiest way to obtain the surface anchoring coeffi-
tional to the squared value of the bulk order paramater cientW is to create a director deformation far from the sur-
«Q~?. Taking into account the fact that the elastic constanface. Then, measuring the response of the director near the
K33 is typically proportional taQ?, this gives for the anchor-  cell surface, or fitting the director profile with a theoretically
ing parametemV=Q* [6]. predicted profile, yields an estimate of the anchoring ex-
There have been several attempts to estimate the ancharapolation length and ratios of the elastic constants.
ing coefficient theoretically7] and by combining molecular  |ndeed, consider one of the possible geometries suitable
simulation with a local density functional approaf®,9].  for the measurement of the zenithal anchoring strength. Let
The main difficulty here is that one needs to know the directhe director have fixed orientation at the boundanl. The
pair correlation function of the nematic State, which is USU-syrface az=0 is assumed to provide homeotropic anchoring
ally unknown, and must hence be estimated with some ungf strengthW. In the elastic description, deformations of the

controlled approximations or assumptiofsee, however, director fieldn are described by the total free eneifdy,
Ref.[10]). Moreover, it is often assumed that the director in

II. ELASTIC DESCRIPTION

) ] ] }'e|=f fbdv+f fdS 2
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Heref, is the Frank-Oseen elastic free energy density, Using Eq.(8), one can fit the director profileg(z) with
N=Kz3/W and 6= (Kz3—K1)/K33 as adjustable parameters.
fo=3{K11(V-n)2+Ko(n-[VXn])2+Ka(nX[VXn])?},  To simplify the procedure, it is more appropriate tozt)
rather thand(z).
()
Ill. ONSAGER APPROACH

whereK 1, Ky, andKs; are elastic constants, and the inte- _ )
gration extends over the sample voluMef is the surface The Helmholtz free energy in the Onsager approach is

anchoring energy density, which we assume to be of th&XPressed in terms of the single-particle denpit), where
Rapini-Papoular form(1), and it is integrated over the (1)=(r1,€) represents both position, and orientation
boundary surface. Q,. It has the following forn13,14:

In slab geometry, the directoris assumed to lie in the-z
plane anq depends (_Jnly on tlze:oor_dinate. Then it can be Bf[p]:f p(D{Inp(HA3—1—Bu+BU(1)}d(1)
parametrized aa=(sin §,0,cosd) which transforms Eq(2)
into a free energy per unit area, 1
-5 | fa2pmp@dna@. o

2d 1W S 4
o Z_E cos 6y, (4)

1 L
FalS= §K33J0 f146) Here B=1/kgT, A is the de Broglie wavelengthy is the

chemical potentiall) is the external potential energyclud-
where f(0)=1—4sirf 6, 6=(Ks—Ki1)/Kss, 6,=6(z ing the surface potentiglandf(1,2) is the Mayerf function,
=0).
The absence of explicit dependence in the free energy
(4) implies the first integral

f(1,2)=exgd —W(L,2)/kgT]—1, (11)

where elongated particles interact pairwise through the po-
90\ 2 tential V(1,2).

_) = const. (5) The equilibrium. single-par'ticle density that minimizes the
9z free energy (10) is a solution of the following Euler-
Lagrange equation

f13(0)

Boundary conditions read

o0 1 Inp(1>A3—ﬂu+ﬁU<1)—f f(1,2)p(2)d(2)=0,
K33f13( 00) E :EWS”’] 200, (12)
z=0
which can be obtained from the variation of the functional
6(z=L)=6. (6) (10). In practice, we find it more convenient to minimize the

functional (10) instead of solving the integral equati¢t?).
Here we assumed that the director angle at the bounzlary

=L is fixed. _ - A. Bulk problem
Integrating Eq(5), together with the boundary conditions, ] ) o
yields In the bulk problem, the single particle density is indepen-
dent of position,p(1)=p(£24). Then the integrals over po-
E(6,5)=E(6y,8)+[E(6,,8)—E(6,,6)]z/L, sition may be performed directly. To perform the integration

over the angles, we expand the Mayfefunction and the
[E(6,.8)—E(6o,8)]\T1a 0g) = (LI2\)sin 265, (7) single-particle density in spherical harmonics,

whereE(,8) = [ {\f(x)dx is the incomplete elliptic inte- ~ f(L,2)= > /17271(r ) d 17271(Q,,0,,Q)),

gral of the second kind, and=K33/W is the anchoring ‘12 (13)
extrapolation length. For small anglég Eq. (7) can be sim-
plified and has the form even

N P=2 pY o), (14)

where®”172:/r(Q,,Q,,Q,) is a rotational invarianf15]

Note that for small angleg, and, correspondingly, for small P P 1 Ly O
0, E(6,6)= 6 and we have linear dependence of the director Q12 =4 Y, M om. m
angle on thez coordinate, Me.M.me AT T2 T

X Y/lml(ﬂl)Y/zmz( QZ) C/rmr(ﬂr) . (15)

Z+N\
on(z)=~0(z)= 0Lm' (9) Here
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J /) //I) ﬂK33= K(—=2,4,— 4), (21)
m m m where
is a 3 symbol, Q, is the direction of the unit vectof;, 2 even /.70

=ry,/ri;wherer,=r;—rp, C is areduced spherical har- o o 27T Y o o1 qy 2
monic. In writing Eq.(14), we assumed that the directay is (a1.82,83) 3 2/: (“+1)p7
pointing along thez axis.

g

2/+1

To minimize the grand potential it is convenient to expand 6a;+a,/(/+1) (2(/’— 2)! ) 12 //‘21

the logarithm of the density in spherical harmonics, B 5 (2/+3)!
even y ,
np(@)=3 ¢ o(0). 16 . 3/2((2;’)): ( (z(fi );)! "

The grand potential then can be rewritten in the form ></J/P,/+2|/’/+2’2,

BT a1 Bt S, oot 2V e of e oyt ety 1> 0ver the expansion

Vi A Cops W/P/, yer iunctio

17

C. Slab geometry

where the coefficientp, may be expressed in terms of the  |n slab geometry, with the direction normal to the sur-
parameters,, and where the pair-excluded volume is ex- faces, the single-particle density and the external potential

panded in coefficients depend on the coordinate only. To perform the integrations
over the angles, we expand the Mayedunction into rota-
V,,= —477Jwr2dr £/70(r). (18 tional invariants, similar to the bulk syste(h3). The single-
- 0 particle density and its logarithm can be also expanded in

. . . ) spherical harmonics,
The grand potential was numerically minimized with respect

to variation of the parameters -, by the conjugate gradient

method[16]. The resulting single-particle density was used p(z,Q)=/Em P/m(2)Y (),
to calculate elastic constants, for different values of the order
parameter.
INp(z,2)=2, ¢/n(2)Y /n(€). (22)

B. Elastic constants
To evaluate the elastic constants we used the expression$e difference from the bulk case, E4$4), (16), is that the

derived by Poniewierski and Stedki7—19, director is allowed to vary in thg-z plane, so an expansion
in Legendre polynomialsnj=0) is not sufficient. Conduct-
K11= Myxxsx™ Myyyy, ing angular and andy integrations gives

Koo= Mxxyy: Ivlyyxxv BF
o= | dafan(1 Buiped2)
Kaz=M, =M zzyy (19

where +/§;n [C/m(2)+BU, m(2)]p/m

1
Magyo=5 kel f dri 00,2, f(r1z, 0y, ) +2m J dz,d2,A, |/, (210, w(20)p/ m(20),

X1 op’ (CoSO1)p’ (C0S02) D1, Q5. (20) (23)
All integrals are evaluated in a local coordinate frame withwhere the pair-excluded area at giveseparatiore,, is ex-
the z axis parallel to the director at point panded in coefficients
As discussed in Appendix A, performing the integrations ’
over the angles and making use of the propertiesjogyn- SN Sy
bols and spherical harmonics, one obtains a simplified ex- A/ly/zym(212)=—2772/: m m O
pression previously given by Stelzer al. [20]:
BK11=K(1,1,3), X fo sdst. ., (ri)P,(cosb).
BK»=K(1,-5-1), (24
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Here s?=(x;—X,)2+(y;—V,)? tan6=9(zz—2), m= (Eq.26. However, this equation should be valid for the lead-
—m. Integrating, we took into account that th¢ 8ymbol ing term in the density expansiori; =2, which we consider
vanishes unless); + m,+m,=0. below.

To obtain equilibrium single-particle density profiles, the  First, we construct the solution to the E@8) in the cell
grand potential then was tabulated on a regular grid of pointbulk. The kernelA/ll/zyl(zz—zl) is a short-ranged function.
z; and numerically minimized with respect to variation of the |t equals zero for|z,—z,|>a, wherea is the molecular

parameters, (z;), by the conjugate gradient method. length. The bulk director is a slowly varying function on this
length scale. Therefore we can expand it in a Taylor series
D. Anchoring energy

ONy(2) = ONy(21) + ONL(Z1) Zypt+ ON(Z4) 222+ -+
To obtain the microscopic expression for the extrapolation «(22) «(2) (21)212 (7)1 (29)

length A, we start from the equation for the single-particle

density(12). Assume that the solution for a ground state, i.e.,and restrict ourselves to second order in the expansion. Then
for homeotropically aligned liquid crystal in slab geometry, the equation for the directof28) can be rewritten as a

is given by the single-particle densipy. Consider a small  second-order linear differential equation
perturbation around the ground staes py+ dp. To first

order in 5p, Eq (12) can be written as az(z) 5n;(z) + al(z) 5n>’((z) + ao(z) 5nx(z) = 0, (30)
op(1l
L):f £(1,2)85p(2)d(2). (25)  where
po(1)
T even L
In the case of slowly varying director fields we assume a,(z)=— E N o 5+ 1)f Az, 1(2,—2)
that the free energy functional is locally in equilibrium. This V6 =2 0
is equivalent to the mathematical simplificatigh21] N
12
Xpr(22) A2 Ca(2) 60 (31
p(r,Q)=po(r,n(r) - Q). (26) '
Then the density perturbation can be written in terms of the In the bulk, the expgnsmn coeff|<:|_em§ and_p_/z do not
perturbation of the director depend on the coordinate. Expansion coefficients of the
' excluded areaA/ly/z/r(z), are even functions dof, which
Sp(r, Q)= pi(r,ng- Q) dn(r)- Q, (27)  immediately implies thag;(z) =0 in the bulk, since the in-

tegrated functiorzA/l/zy/r(z) is odd[because(z) is zero

where the prime denotes a partial derivative with respect té the bulk, we expandedn,(z) up to second ordér
(ny- Q). To prove thaa(,(z) =0in t_he bulk, we consider again the

In slab geometry with the axis normal to the surfaces, €qguation for the single particle density2). Performing the
the single particle density, depends on the coordinate  Usual expansion of density afidunction (13), (14) and in-
only and can be expanded in spherical harmonics similar té2grating over the angles andy coordinates we obtain
Eq. (22). Note thatpy does not depend o, which implies .
m=0 in expression§22). We also assume that the director is _ _ f _
parallel to thex-z plane,én=(n,,0,0). Conducting angular Co(2) \/Eﬂ'u am 0 Aood 22~ 21)po( )02,
integrations in Eq(25) and making use of the properties of
3j symbols we obtain even .

¢,/ (z1)=—4m > f A/, 22— 21)p, (22)dZ,

172 72=0 J0

even
B 7o/ 2+1)
c, (z)on(zy)=4m X (m

/=2 (/1#0), (32
XJWA/ /21(22—21)P/2(Zz) where A/l,/z,x are the expansion coefficients of the
1 /
0 excluded area in a series of spherical harmonics. It is
X 8n(2,)d 2. (29) easy to show that the left-hand side of the second equation

in Eq. (32) equalsagy(z) in the cell bulk. Indeed, using the

Equation(28) is a homogeneous Fredholm equation of thesymmetry Of. the echudLed valume expansion coefofcluents
second kind. It allows one to calculate the director profileV& ¢€an write —4a I Aosya(zo—z)dzp=4m [Z.
(for small director deviations from the ground staig=e,)  A220(2)dz6,,,=V2,0,,,, Which converts the expression
once the single-particle densify, of the ground state is for ay(z) to the left-hand side of the second equation in Eq.
known. Equation(28) is not valid for every/, in spite of  (32). In fact, the conclusioray(z)=0 in the cell bulk is a
the derivation. This is because we are trying to map theonsequence of the invariance of the grand potential with
single-particle density variation onto the director variationrespect to director rotations.
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Therefore, Eq.(30) in the cell bulk reduces t&ny(z) 87 (=
=0 which means we have a linear dependence of the direc- A=-— V_zzJo zA54(2)dz, (36)
tor on z coordinate, in agreement with the result of elastic
theory(9). This also means that, in the cell bultg+c,z is
an eigenvector of the Fredholm equati@®).

To solve Eq.(28) near the cell boundary is a much more
challenging task. Numerically it can be done using, for ex-
ample, an iterative methdd 6]. Here we try to construct a
crude analytical solution that will give us some qualitative
understanding of what is happening in the interface region.

To begin with, we simplify Eq(28). The sum over’, on
the right-hand side of Eq28) is converging very fastfor
ellipsoids with the elongatioe= 15, every term is about ten
times smaller than the previous gn&herefore, we truncate
the sum leaving only th&’,=2 term. Then, the kernel of the
Fredholm equatio’\, , 4(z; —z,) can be expanded in a Tay-
lor series,

and does not depend on the value of density or order param-
eter, since excluded area, as well as excluded volume, are
completely defined by the geometry of the overlapping mol-
ecules. This means that in the ideal case of a uniform nem-
atic, the anchoring coefficie'dV=Ks33/\ has the same de-
pendence on the order parameter as the elastic conéfant

In reality, one observes rather strong subsurface variations
of the density and order parameter. The raiigz)/c,(2)
then comes into play and contributes to the overall depen-
dence of the extrapolation length on the order parameter. The
numerical results that show this dependence are presented in
Sec. VIB. A simple physical explanation is also possible.
Presmectic ordering and higher density of the nematic phase
in the interface region indicate that the nematic liquid crystal
. is at different state point. The mesophase is more ordered at

n this state point and this ordering is less sensitive to the den-

A2,2,1(Zl_22):nzo 2;Pn(22), (33 sity variation in the cell bulk. Since this ordering defines the
director profile at the interface, it also affects the dependence

where ®,(z) are some functions. A practical example of of the extrapolation length on the state point,

such an expansion is given in Appendix B. The kernel is then
separable, and the problem is reduced to the solution of a set IV. THERMAL FLUCTUATIONS
of linear algebraic equations. Indeed, substituting &3)

) ) Another simulation method to measure bulk elastic con-
into Eq. (28) we obtain

stantsK;; and the zenithal anchoring enerlly is based on
. the measurement of the director fluctuation amplituéiesn
_ the liquid crystal cel[22—25. Consider again slab geometry
_ 1
on(z)=c¢; (Z>n§0 bnz", (34 With homeotropic anchoring of the director at both cell sur-
faces. Consider a small perturbation of the director around

where theb,, are some constants. Substituting E2¢) back the equilibrium distribution

into Eq. (28) we obtain an infinite set of linear equations for
the coefficientsh,,. To obtain an analytical expression, we
perform further simplifications. First we note that, in the cell
bulk, the director is a linear function of the coordinate.
Therefore, to a good approximation, we may retain only th
first two terms in Eqg.(30) since in the cell bulkc,(z)
=const. Using again the director profile given by elastic
theory, Eq.(9), we obtain an expression for the extrapolation
length

n(r)=e,+ én(r). (37

Minimizing the free energy?2) and linearizing the equations
for the director and boundary conditions with respecbtig
e obtain

Kaa( Ny xxt 5ny,yx) + Ko 5nx,yy_ é\ny,yx) +Kzzdny ,,=0,

K1 anx,xy+ 5ny,yy) + Koo Ny yx— any,yx) +Kzzdny ,,=0,

bo 477j 02A221(2)p2(2)c; H(2)dz

J J
Wén+ K33_ on :O, W5n—K33— on =0.
= b_l = (35) 9z z=L gz z=0

A
1-4m f 5Az21(2)pa(2)c, H(2)dz (38)

Here we adopt the notatiofn,, g, = dzd,(dn,).
This expression is able to give qualitative explanations of the We now expandsn(r) in a series of orthogonal functions
anchoring phenomenon in our system. In the ideal case, often

considered in phenomenological approadi&s, the density 1 . .

and order parameter are assumed to be constant in the cell, on(n =g > eunsnt(q,,q,)e%

ie., pz(z)cz’l(z) =const. The anchoring appears only due to o

the presence of the interface, which breaks translational sym- +6n7)(q, ,q,)c 97 7], (39

metry. According to EQ.(32), c,=—Vyp,, therefore

4 [ Asz24(2)p2a(2)c; *dz=1/2. Then the anchoring coef- where g, =(q,,q,), and sn(7)=(ix—&)/(ix+& o™ to
ficient is proportional to the first moment of the excludedsatisfy the boundary conditions. Here we have introduced the
area coefficieni, , 4(2) dimensionless wave vectgr=q,L and anchoring parameter
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WL L mitted g, spectrum, and the variation ¢fQ,,(k,)|%) with
SZK_g,g:X’ (400 k,, are sensitive to the anchoring strength parameéter
=L/\.

where\ is the extrapolation lengtfl]. The wave vectors,
form a discrete spectrum because of confinement inzthe
direction, which depends on the anchoring ene¥gyThe V. MOLECULAR MODEL AND SIMULATION METHODS

explicit form of theq, spectrum is given by the secular equa-
tiog Gz SP g y g We performed Monte Carl@MC) simulation of a liquid

crystal confined between parallel walls, with finite homeotro-
(£2— x?)siny+2&y cosy=0. (41) pic anchoring at the walls. We used a molecular model that
has been studied earlier in this geomé¢&§]. The molecules
In molecular simulations, rather than measuring directoiin this study were modeled as hard ellipsoids of revolution of
fluctuations, it is more convenient to measure fluctuations otélongatione=a/b= 15, wherea is the length of the major
the second-rank order tensor componefitdlowing Ref.  axis andb the length of the minor axis. Such systems cannot
[26]). We define the real-space order tensor density form smectic or columnar phasga7], and the phase transi-
tions are not thermally driven as they are for most mesogens.

\4 i Therefore, it should be borne in mind that simulation results
Qap(n)= NZ S(r=r)Qup. are model specific, however, the advantage of using systems
of hard ellipsoids is that they exhibit a simple phase behavior
QLB:%(UmUiB_%‘saﬁ), with some resemblance of that of real nematogens. In addi-

tion, as the elongation increases, the nematic-isotropic phase
wherea, B=X,y,z, in terms of the orientation vectots of bou_ndary approaches th(_a Onsager Iin_1it. This eases the com-
each moleculé (we consider only uniaxial moleculesf we ~ Parison bgtween simulation and density-functional Onsager-
assume that there is no variation in the degree of orderingyP€ theories.

and neglect biaxiality of the order tensor, we may write The phase diagram and properties of this family of mod-
els are well studie27-31. It is useful to express the den-
Qup(n) = %Qna(r)nﬁ(r)— %anﬁ, sity as a fraction of the close-packed dengity of perfectly

aligned hard ellipsoids, assuming an affinely transformed
whereQ is the order parameter, i.e., the largest eigenvalue oface-centered cubic or hexagonal close-packed lattice. For

Qup(r)- this model, temperature is not a significant thermodynamic
Measurements are performed directly in reciprocal spacejuantity, so it is possible to chookgT=1 throughout.
The Fourier transform of the real-space order tensor is The slab geometry is defined by two hard parallel confin-

ing walls, which cannot be penetrated by tentersof the
B era v i iker ellipsoidal molecules. Packing considerations generate ho-
Qup(k)= JVQaﬁ(r)e dr= ﬁzi Qup™ - meotropic ordering at the surface, since the molecules have
more free volume if their axes are normal to the wall. Sur-
Then the fluctuationg|Q, (k)|2) can be easily measured face anchoring in this system has been studied recently by
from simulations applying an orienting perturbation at one of the walls and
observing the response at the otfi2b] and by measuring
V2 , 2 amplitudes of the director fluctuatiof@2]. This yielded an
|Qaﬁ(kz)|2=W[ ( > Qg COS(kzZi)) estimate of the extrapolation length=17.5~1.16a at one
' particular state point corresponding to the value of the order
parameteiQ~0.85.
, (42 A sequence of runs was carried out for systemsNof
= 2000 particles using the constad¥T ensemble, allowing
typically 1®° MC sweeps for equilibration and 410
sweeps for accumulation of averageme sweep is one at-

+

2
Y QLﬁsin(kzzo)

and compared with the prediction of elastic theory

9 Q% ot & tempted move per partidleThe wall separation was fixed
(1Quz(k)|?= 5 ksT > —— and equal td.,~4.93. Note, that the size of the simulation
8 Kaz rz Q(26+ x"+ &%) box L, is not equal to the liquid crystal cell thicknegs
01 [iy—¢ ei(K—x)_:L’Z appearing in.the elastic. theory. The differencp can be as-
(, ; cribed to partial penetration of the walls by the liquid crystal
K+ X ix+él w—x | molecules, and/or formation of a solid layer near the walls. It

(43 is possible to writd.=L,+2L,,, whereL,, characterizes the
wall. In our previous publication we found,~0.3a [22].
where(- --) denotes an ensemble averagesk,L. The same molecular model and interaction of the mol-
We measureQ and (|Q,,(k,)|?) from simulations, Eq. ecules with the walls was adopted for the Onsager calcula-
(42), and then compare with the theoretical prediction, Eqtions. It was found sufficient to include terms witk=0<8
(43), which is parametrized bl, \, andK ;. Both the per- in the expansion of Ip, while terms with G<I1<10 were
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TABLE I. Onsager calculations in the bulk. Reduced densitigg,,, values of the nematic order parame@rand elastic constants for
hard ellipsoids with elongatioa=15.

M P/Pcp Q K1 Koo Kas

1.2 0.0293 0.7193 0.7951 0.2925 3.5290
1.3 0.0303 0.7532 0.8883 0.3294 4.4024
1.4 0.0313 0.7779 0.9677 0.3614 5.2387
1.5 0.0323 0.7973 1.0398 0.3909 6.0704
1.6 0.0332 0.8132 1.1076 0.4190 6.9113
1.7 0.0341 0.8266 1.1726 0.4463 7.7694
1.8 0.0349 0.8382 1.2361 0.4731 8.6496
1.9 0.0358 0.8482 1.2985 0.4997 9.5547
2.0 0.0367 0.8571 1.3605 0.5263 10.4883
2.1 0.0376 0.8650 1.4225 0.5531 11.4510
2.2 0.0384 0.8721 1.4848 0.5801 12.4448
2.3 0.0393 0.8785 1.5477 0.6076 13.4716
2.4 0.0402 0.8843 1.6113 0.6354 14.5318
2.5 0.0410 0.8896 1.6758 0.6639 15.6268

included in the expansion of the pair excluded volume coefapplied near the right wall. Profiles of director anglg) are
ficientsV,, and the excluded area coefficierts ., m. compared with elastic theoffeq. (8)] in Fig. 2. The elastic
theory has been fitted to the director angle profiles predicted
by the Onsager theory using two adjustable parameters the
VI. RESULTS AND DISCUSSION extrapolation lengti\ and the elastic constant rati® Note
A. Onsager theory, bulk that only part of the bulk region has'been gsed for fitting,
. . 20<z/b<80 where the elastic theory is applicable.
~ Minimization of the free energy function&l0) was car- The anisotropy of elastic constant®btained from fitting
ried out for several values of chemical potenialFrom the 5 shown in Fig. 3, together with the results of calculations
single-particle density we evaluated Frank elastic constant@,sing the Poniewierski and Stecki expressions. The value of
v_vhich, together with the value; of the bulk density as a frac—& and hence the splay constaf, comes into play only as
tion of the close-packed density and the value of the ordefe geformation angl#é(z) increases. Therefore, for the ex-

parameter are given in Table |. The results are typical of thee g field with easy axi®, = /4, the error in the determi-
elastic constants of prolate bodies. They increase with fluighotion of 5 from simulation data is quite large.

density (order parametgrandK 3> K; >K, [29]. The dependence of the extrapolation lengtbn the order

It is essential to carry out bqu_ calculations if we want to parametef is shown in Fig. 4. It is seen that Onsager theory
know both anchoring extrapolation lengi~=Kg3/W and

anchoring strengthiv. The bulk problem provides us with the
absolute values of the elastic constants; the elastic theonr
includes only ratios of elastic constants in the expression for I Poe

0.90 T T T T T T T T

the director profile. 085 L o i
o | o
o ;
B. Onsager theory, slab geometry % 0.80 1 ,’ )
Minimization of the grand potential was carried out in g ,.’
slab geometry for the same values of chemical poteptias g 075 /
. — [ -

considered in bulk. From the density and order parametelg ’
profiles we were able to extract values of these quantities ir§ I /
the central part of the cell, which agreed with the bulk On- ~ ¢70} ¢ .

sager calculations. |

Together with the simulation results, we plot dependences . . . .
of the bulk order parameter versus density in Fig. 1. The %5 025 0.30 035 0.40 045
Onsager theory does not describe the bulk equation for the Density, p/pCp

state perfectly: the predicted bulk density for a given order

parameter value is larger than the value obtained in the simu- FiG. 1. Order paramete® as a function of the densitymea-

lation. sured far from the surfageThe density is expressed relative to the
With this choice, the same values of the chemical potenclosed-packed density,, for perfectly aligned ellipsoids. Filled

tial and the same slab dimensions, minimization of the grandircles: simulation results. Open circles: Onsager theory calcula-

potential was carried out for the system with an external fieldions in slab geometry. Solid line: Onsager theory, bulk.
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FIG. 4. Extrapolation length as a function of the order param-
etry. Orienting fields are applied in the region ¥08/b<148 near  eter. Circles: Onsager theory in slab geometry, director profiles fit-
the right wall, favoring director angles af4 and/2 relative to the  ted with elastic theory, for anchoring field with= /4. Triangles:
surface normal. The left wall is unperturbed. Solid lines: Onsagethe same, but for=7/2. Diamonds: Onsager theory in slab geom-
theory. Circles: results of fitting the profiles in the bulk region with etry, with no field, extrapolation length calculated using E2p).

the prediction of elastic theory. Filled squares: Monte Carlo results obtained by measuring director
fluctuations. Open squares: Monte Carlo results, with applied field
near the right-hand wall.

FIG. 2. Typical profiles of director anglé(z) in the slab geom-

predicts the extrapolation length to grow linearly with the
order parameter, which is completely different from the ex-
perimental results in thermotropic liquid crystals, wheare
decreases with the increase of the order paramet€r &s

We have also carried out minimization of the grand po-

the truncation of the sum in Eq34). This is not a funda-
mental problem and can be easily corrected by taking into
account a sufficient number of expansion coefficients. How-

tential for the system without an external field. As a result,ever’ this p.omts out that the dependence .Of the director on
the z coordinate near the cell surface is different from the

we obtained the single-particle density with a homeotropigc. . .
distribution of the director in the cell. The dependence of thgmear dependence in the cell bulk. Moreover, to obtain cor-

) fect quantitative values of the anchoring coefficient, or ex-

extrapolation length on the order parameter was then Ca|CL{Fa X . e

. . I polation length, one needs to know the director distribu
lated using Eq(35) and is also shown in Fig. 4. The results tion at the surface. The assumptiofn=const in the
gualitatively agree with the results of fitting obtained byinterface region whi(;h has been mFa)\de in Ref, may lead
combining Onsager theory and elastic theory. The extrapolat— bsolut Ig o t estimat f1h h , may Hicient
tion length tends to grow with increase in the order param—0 absolutely Incorrect estimates ot the anchoring coeflicient.
eter and has the same order of magnitude. Plugging this
single-particle density into all equations preceding &%),
we were able to check the approximations we did deriving Simulations were carried out in slab geometry for several
this equation. We found that the most crude approximation isalues of the number density. The density variation 0.25
< pl/ pep<0.34 provides a sufficient range of order parameter
variation in the nematic phase, 068=0.88 for us to
study the effect of ordering on elastic behavior.

The order tensor fluctuations in reciprocal space were cal-
culated using expressidd?2). To fit the simulation results we
used expressiofd3). Recall that the size of the simulation
boxL, is not necessarily equal to the liquid crystal cell thick-
nessL appearing in the elastic theory. We found thatL,
+2L,, with L,~4.5=0.3a, almost independent of the
density.

w | ] Using this value ofL, we adjusted the extrapolation
length\ and the elastic constaht;; to obtain the best fit to
the fluctuation amplitudes. Typical order fluctuation ampli-
tudes together with the corresponding fitting curves are plot-
Q ted in Fig. 5. From this plot one can see that the fitting curves

FIG. 3. Ratio of the elastic constants=(Kas— K17)/Kas. agree quite well with the simulation results for small values
Circles: Poniewierski-Stecki expressions. Squares: Onsager theoBf the wave vectoik,. At higher k,, the structure is not
in slab geometry, with wall anchoring field at angte= 7/4, fitted ~ perfectly reproduced, as one would expect for a theory
with the results of elastic theory. Triangles: Onsager theory withvalid for long-wavelength fluctuations, but the agreement is
a=7/2, fitted with elastic theory. satisfactory.

C. Simulation

07 —_—
0.80 0.85

0.90
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FIG. 5. Fluctuations of the directdarbitrary unit$ as a function FIG. 7. A_nchoring energyV as a function of the order param-
of wave vector(normalized by the molecular minor axis lengih eter. Circles: Onsager theofwith a smooth curve to guide the

Symbols: Monte Carlo results. Solid lines: elastic theory, fitted to€Y®- Open squares: MC results obtained by measuring director

parameters discussed in the text. Inset: fluctuations multiplied bjluctuations. Filled squares: MC results, field near the right-hand
wa

(k,b)? to emphasize structure at higher wave numbers.

The elastic constanK;3go/kgT versus order paramet€  Fig. 4. One can see that the agreement between the two
is plotted in Fig. 6. The agreement with the Onsager theory ignethods is quite good.
satisfactory, especially if we take into account that the equa- Finally, we plot the dependence of the anchoring energy
tion of state is not perfectly reproduced by the Onsagegoefficient, W= Ks3/\, which is an intrinsic characteristic of
theory. the interface region, in Fig. 7. For Onsager thear{QQ) is

The dependence of the extrapolation lengttn the order  gijven by the results in slab geometry fitted with the elastic
parametel’Q is shown in F|g 4, together with the results theory(F|g 4)’ K33(Q)_by the Poniewierski-Stecki expres-
from the Onsager theory. It should be noted that combiningions(Fig. ). For MC simulations, we used the elastic con-
the elastic approach with the Onsager calculations does n@tant obtained from the analysis of the director fluctuation
allow one to determine, separately, and\. Therefore, the  amplitudes. All methods predict that the anchoring coeffi-
results of the Onsager theory in Fig. 4 really represents cjent is a nonmonotonic function of the order parameter,
+L,, which is one of the possible origins of the systematiceven though the actual variation is small.
difference between the two approaches.

To double check the results obtained by examining the VIl. CONCLUSIONS
director fluctuation amplitudes, we performed the same type
of experiments as in the Onsager slab system. Within a range We have studied the dependence of the zenithal surface
7.5 of the right-hand wall, a strong coupling field was ap- anchoring coefficient on the order parameter of a lyotropic
plied to molecular orientation&/®'~ (u;- e,)?, aligning the nematic liquid crystal modeled by hard ellipsoids. Several
molecular near the right wall parallel to it. After the systemtechniques have been used: Onsager theory combined with
was equilibrated, the director profile was fitted to the resulglastic theory; Monte Carlo simulations fitted to elastic
of the elastic theory, Eq8). The dependence of the extrapo- theory; analysis of the director fluctuation amplitudes ob-
lation length\ on the order parametd) is also shown in tained from Monte Carlo simulations. The results of these

methods agreed qualitatively with each other.

20 . . . . . . . . Perhaps the most interesting aspect of this study is the
increase of the anchoring extrapolation length with the in-
crease of the nematic order parameter. This implies that the
bulk elastic moduli in our system grow faster than the sur-
face anchoring strength. This is opposite to the experimen-
tally observed behavior in thermotropic nematics, where the
extrapolation length goes down with increase of the order
parameter.

A microscopic semi-qualitative expression for the ex-
trapolation length allowed us to conclude that subsurface
variations of the single-particle density, mainly defined by
O T s s om oo the nematic order parameter and density variation, contribute

Order parameter, Q substar_wtlally to the ar_lchorl_ng phenqmenon. We showe_d t_hat
for an ideal system, in which the single-particle density in

FIG. 6. K3b/kgT. Circles: Onsager bulk calculations. Squares: the cell is assumed to be uniform, the extrapolation length
MC simulation results. does not depend on the nematic order parameter. This depen-
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dence is therefore associated with the subsurface variationmrt of the Overseas Research Students Grant; M.P.A. is

of the single-particle density. grateful to the Alexander von Humboldt foundation, the Brit-
We now turn to a brief discussion about possible generish Council ARC program, and the Leverhulme Trust.

alizations of this work. First, it would be interesting to go

beyond the limits of Onsager theory and use the direct pair

correlation function in the nematic liquid instead of the

Mayer f function. Second, as was shown in Sec. IlID, the  performing the integrations over the angles in expression

anchoring coefficient can be calculated if we know the(20) and making use of the properties of 3ymbols and

single-particle density and the direct pair correlation functionspherical harmonics one obtains

(or Mayer f function in case of Onsager thegryThis has

also been done by Stelzet al. [9] with numerous approxi- _

mations. Combining elastic theory and local density func- PKu=x(1,11,1,1,], (A1)

tional theory, one can avoid these approximations, or at least

check their validity. This work is in progress. BK2=x(1,-1,1-1,1-1),

APPENDIX A: ELASTIC CONSTANTS

ACKNOWLEDGMENTS BKSBZ k(—2,0~2,0~2,0),
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GR/L89990 and GR/M16023. D.A. acknowledges the supwhere

K(bl,bz,b3,b4,b5,b6)=Tﬂ-zgn/(/-i-l)pz/ —(i _/1 g)l/v/h%(j _/1 i)wz
R A e I - I
LN MRS | Tt (CAaL L (L

and 1”172 are radial integrals over the expansion coeffi-and|”122=|"2"12 Performing simplifications and taking
cients of the Mayef function, into account explicit expressions for th¢ 8oefficients32],
we obtain expressiof21).
I/lv/Z'/zfdrr“f/l'/z/(r). (A3)
APPENDIX B: EXPANSION OF THE KERNEL

Expression(Al) is the same as obtained before by Stelzer From the numerical data we found that the kernel of the
et al. [20], except that we used j3symbols instead of integral equationA,,,(z) can be accurately approximated
Clebsch-Gordan coefficients and a different normalization ofvith a Gaussian function
the single-particle density. To simplify E¢A2) we use the
relation between the j3symbols Va2,

Az21(2)=—
/or+2 2 /o r+2 2 Amyml
NEE:

1 1 -2 1 -1 0 where we took into account that-4w[”, A,,(z)dz
and take into account the fact that sums viath bs andb,. on the elongation of the molecules.

exd —(z/1)?], (B1)
1

2

) . (Ad)

=V,,. Herel is a geometrical parameter that depends only

be are identical, since Using the generating function for the Hermite polynomi-
/Sy 2 Vy /12 als(33]
=(—1)"1""2 "
1 -1 0 -1 1 0 t,
exp( —t2+2tx) = >, Hy(x) —, (B2)
/2 /1 2 n=0 n:
11 -1 o) one can write the kernel in a separable form,
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1z
n!

exf —(z2/1)%]

Aspi(Zp—21)=—

X >, T

> ) Ha(z2/1), (B3

similar to the general case we used in Sec. Il D.
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=1/

(B4)

For ellipsoids with elongatiore=15, we foundl~5.46b.
This results in an anchoring coefficiext=3.1b that is much
lower than the actual value of the anchoring in the system
with the density and order parameter variations at the sur-
faces. Hence, changes in the density, order parameter, and, as

Using this approximation to the kernel one can show thag result, in the director profile in the interface region cannot

the expression for the anchoring coeffici¢B6) reads

be neglectedsee also Sec. VIB

[1] P. G. de Gennes and J. ProBhe Physics of Liquid Crystals
2nd paperback edClarendon, Oxford, 1995
[2] A. Rapini and M. Papoular, J. Phys. Coll®p, C4 (1969.

[3] D. Subacius, V. M. Pergamenshchik, and O. D. Lavrentovich,

Appl. Phys. Lett.67, 214(1995.

[4] H. Yokoyama and H. A. van Sprang, J. Appl. Ph§g, 4520
(1985.

[5] Y. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar,
and O. D. Lavrentovich, J. Appl. Phy86, 4199(1999.

[6] A. Mertelj and M. @pic, Phys. Rev. B1, 1622(2000.

[7] B. Tjipto-Margo and D. Sullivan, J. Chem. Phy88, 6620
(1988.

[8] P. I. C. Teixeira, A. Chrzanowska, G. D. Wall, and D. J.
Cleaver, Mol. Phys99, 889 (200J.

[9] J. Stelzer, L. Longa, and H. R. Trebin, Phys. Reb4: 7085
(1999.

[10] N. H. Phuong, G. Germano, and F. Schmid, J. Chem. Rhys.
be published

[11] C. Skaej, V. M. Pergamenshchik, A. L. Alexe-lonescu, G.
Barbero, and S. Zumer, Phys. Rev5E, 571 (1997).

[12] N. Priezjev and R. A. Pelcovits, Phys. Rev6E 6734(2000.

[13] L. Onsager, Ann. N.Y. Acad. Schbl, 627 (1949.

[14] R. Evans, inFundamentals of Inhomogeneous Flyigslited
by D. HendersoriDekker, New York, 1992 Chap. 3, pp. 85—
175.

[15] C. G. Gray and K. E. Gubbingheory of Molecular Fluids. I.
FundamentalgClarendon, Oxford, 1984

[16] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetter-
ling, Numerical Recipes in Fortrar2nd ed.(Cambridge Uni-
versity Press, Cambridge, 1992

[17] A. Poniewierski and J. Stecki, Mol. Phy38, 1931(1979.

[18] M. D. Lipkin, S. A. Rice, and U. Mohanty, J. Chem. Phg2,
472(1985.

[19] H. Yokoyama, Phys. Rev. B5, 2938(1997).

[20] J. Stelzer, L. Longa, and H. R. Trebin, J. Chem. PH@3
3098(1995.

[21] A. M. Somoza and P. Tarazona, Mol. Phyg, 911 (1991J).

[22] D. Andrienko, G. Germano, and M. P. Allen, Phys. Re\W6Z&
6688 (2000.

[23] M. P. Allen and D. Frenkel, Phys. Rev. 3V, 1813(1988.

[24] M. P. Allen and D. Frenkel, Phys. Rev.42, 3641E) (1990.

[25] M. P. Allen, Mol. Phys.96, 1391(1999.

[26] D. ForsterHydrodynamic Fluctuations, Broken Symmetry and
Correlation FunctionsVol. 47 of Frontiers in Physic¢Ben-
jamin, Reading, MA, 1976

[27] D. Frenkel, B. M. Mulder, and J. P. McTague, Phys. Rev. Lett.
52, 287 (1984.

[28] D. Frenkel and B. M. Mulder, Mol. Phy&5, 1171(1985.

[29] B. Tjipto-Margo, G. T. Evans, M. P. Allen, and D. Frenkel, J.
Chem. Phys96, 3942(1992.

[30] M. P. Allen, Philos. Trans. R. Soc. London, Ser3A4, 323
(1993, theme issue: understanding self-assembly and organi-
zation in liquid crystals.

[31] M. P. Allen, G. T. Evans, D. Frenkel, and B. Mulder, Adv.
Chem. Phys86, 1 (1993.

[32] A. R. EdmondsAngular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, NJ, 1974

[33] I. S. Gradshtein and I. M. Ryzhikiables of Integrals, Series
and ProductgAcademic, Boston, 1994

021704-11



